

Kintech Engineering's ON/OFF Module is designed to control the power applications that may typically be needed in a wind/solar measuring installations such as activating and monitoring beacon lights or heating sensors.

The ON/OFF Module uses the control signals of any of the six programmable outputs featured in the Orbit 360 data logger to connect or disconnect a load from its power supply. Each module comprises two solid-state relays, enabling the control of two independent power circuits.

Solid-state relays (SSRs) are electronic switching devices that activate or deactivate when an external voltage is applied to their control terminals. While they serve the same purpose as electromechanical relays, they consume significantly less power than conventional electromechanical relays and have no moving parts, resulting in a longer operational lifespan. By integrating an on-chip optocoupler, the SSR also ensures that the control is electrically isolated.

Up to three outputs can be used to control each module by means of Boolean AND/OR logic (see diagram on page 3). Typical use for the AND logic would be to activate a signal when, for instance, the temperature falls below 0°C AND the relative humidity goes beyond 70%. When a single signal is sufficient to control the relay activation, leave the CTAx terminals unconnected and just connect the control signal to the CTOx terminal. Each relay is assigned an LED that indicates whether it is open/inactive (LED off) or closed/activated (LED on).

ON / OFF MODULE | CONTROL POWER APPLICATIONS

In order to detect failures on both the load side (such as a broken beacon) and the power side (such as a dead battery) the ON/OFF module includes two outputs that monitor the current flowing through each relay. These outputs can be connected to any analog channel of the logger. The current is measured by hall effect, thus maintaining galvanic isolation between the power and control sides. Two microswitches allow the user to disconnect the hall meters to save consumption in case they are not going to be used.

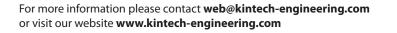
The transfer function relating the module ILDx output to the current through relay x is as follows:

Current through Relay 1 [A]=1.25 x ILD1-0.625 Current through Relay 2 [A]=1.25 x ILD2-0.625

In case you want to monitor the voltage together with the current measurement, a commercial voltage divider from Kintech Engineering can be used, connected to a separate analog channel of the data logger.

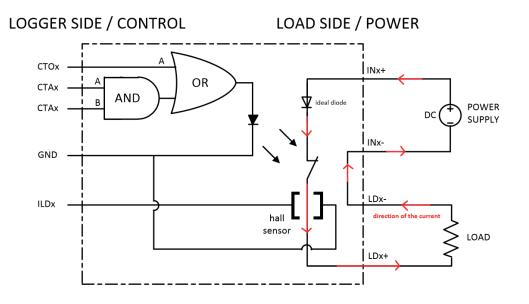
SPECIFICATIONS

Number of relays	2		
Relay operational function	Single-side stable type		
Relay technology	Solid-state relay (SSR) with optocoupler		
Relay contact type	Normally open (NO)		
Control voltage (CTxx terminals)	9 to 30 V		
Max. current load (per relay)	4.5 A		
Max. voltage (load side)	60 V		
Polarity (load side)	Unipolar [1] (-36 V reverse polarity protected)		
Galvanic isolation load - control	420 V		
Current sensing [A]	1.25 x ILDx – 0.625		
Current sensing interfacing	To analog logger channel (0-5V input or greater)		
Required power supply	Self-supplied through control voltage terminals [2]		
Supply current (@ 12V)	7 mA (current sensing OFF)		
	19 mA (one current sensor ON)		
	32 mA (both current sensors ON)		


[1] – Current must enter the relay via INx+ terminals and exit via LDx+ terminals.

[2] – The ON/OFF module does not need a dedicated power supply; it is capable of powering its internal electronics from any of the control terminals whenever any of them is activated.

SENSOR WIRING TABLE


ON/OFF Module		ORBIT 360			Power supply system	Load
Section	Terminal	Section	Terminal	Туре	Terminal	Terminal
LOGGER	CTA1, CTA1,		67, 71, 75, 79,	Output		
	СТО1, СТА2,		83, 89			
	CTA2, CTO2	Analog Channels				
	GND, GND*		47, 51, 55, 59, 64,	(-)		
			68, 72, 76, 80, 87			
	ILD1, ILD2		48, 52, 56, 60, 65,	Signal		
			69, 73, 77, 81, 84			
SUPPLY -	IN1+, IN2+				(+)	
	IN1-, IN2-				(-)	
1010	LD1+, LD2+					(+)
LOAD	LD1-, LD2-					(-)

* Preferably do only connect one.

FUNCTIONAL DIAGRAM

LABEL	DESCRIPTION	SECTION	CONNECTED TO
	LEFT	SIDE (RELAY #1)	
CTA1	Input A to AND gate function	LOGGER	<i>OUT1, OUT2, OUT3… OUT6</i>
CTA1	Input B to AND gate function	LOGGER	OUT1, OUT2, OUT3 OUT6
CTO1	Input A to OR gate function	LOGGER	OUT1, OUT2, OUT3 OUT6
GND	Control ground	LOGGER	Any (-)
ILD1	Current measurement	LOGGER	Any analog input channel
IN1+	Power supply (+)	SUPPLY	Positive battery terminal
IN1-	Power supply (-)	SUPPLY	Negative battery terminal
LD1+	Load (+)	LOAD	High voltage load side
LD1-	Load (-)	LOAD	Low voltage load side
	RIGH	Γ SIDE (RELAY #2)	
CTA2	Input A to AND gate function	LOGGER	OUT1, OUT2, OUT3 OUT6
CTA2	Input B to AND gate function	LOGGER	OUT1, OUT2, OUT3 OUT6
CTO2	Input A to OR gate function	LOGGER	OUT1, OUT2, OUT3 OUT6
GND	Control ground	LOGGER	Any (-)
ILD2	Current measurement	LOGGER	Any analog input channel
IN2+	Power supply (+)	SUPPLY	Positive battery terminal
IN2-	Power supply (-)	SUPPLY	Negative battery terminal
LD2+	Load (+)	LOAD	High voltage load side
LD2-	Load (-)	LOAD	Low voltage load side

Last modified: 20.05.2024

