

DESCRIPTION

With its small form factor, the Isc & Voc device is meant for use on solar PV panels already installed in the solar PV plant. The device can measure the Isc and Voc values from up to two solar PV panels simultaneously and when supplied as part of a complete measurement kit (including the Orbit 360 data logger) an open-source python script can be included to calculate the soiling rate.

APPLICATIONS

Isc & Voc monitoring of solar PV panels. The Isc output can be used for irradiance calculations whereas the Voc output can be used for cell temperature calculations. The combination of both Isc and Voc outputs can be used to estimate the solar power output.

FEATURES

General

General	
Supply voltage	11.530 V (DC)
Average current consumption	10mA @ 24V
Peak current consumption	500mA @ 24V
Operating temperature	-30+70°C
Storage temperature	-30+85°C
Dimension	72 mm x 89.7 mm x 62.2 mm
Mounting	Standard DIN Rail
IP	IP10
Compatibility	Analog output: all Kintech Engineering data loggers Digital output: Orbit 360 Premium
Manufacturer	Kintech Engineering
Inputs Isc range Isc accuracy Voc range Voc Accuracy	0-20A, 0-30A 0.1% 0-60V 0.1%
Outputs Analog range Analog transfer function Digital* Digital protocol	0-5V Check "How to configure" table RS485 Modbus RTU

^{*}Important: Modbus RTU is only implemented in sensors manufactured after June of 2023.

Ordering information

Isc range	Voc range	Order code	
0-20A	0-60V	SOILKIT03	
0-30A	0-60V	SOILKIT04	

Other options upon request.

SENSOR WIRING TABLE

_{D:}	n Dagarintian		Orbit 360		EOL Zenith	
PI	n Description	Section	Terminal	Туре	Section	Туре
PV+	(+) PV panel 1					
PV-	(-) PV panel 1					
PV+	(+) PV panel 2					
PV-	(-) PV panel 2					
+	Power supply (+)	Power Input	+		BAT	+
GND	Power supply (-)	Power Input	(-)		BAT	-
ISC	Short-circuit	Analog	48 52 56 60 65	Signal	Analog Inputs	1 2 3 4 5
	Intensity 1	Channels	69 73 77 81 84 85 86 90 91 92	Signal	Extra Analog	1 2 3 4 5 6 7 8
	Open-circuit	Analog	48 52 56 60 65	6. 1	Analog Inputs	1 2 3 4 5
voc	Voltage 1	Channels	69 73 77 81 84 85 86 90 91 92	Signal	Extra Analog	1 2 3 4 5 6 7 8
REF	Reference	Analog Channels	47 51 55 59 64 68 72 76 80 87	(-)	Analog Inputs	-
(ISC2)	Short-circuit	Analog	48 52 56 60 65 69 73 77 81 84	C:	Analog Inputs	1 2 3 4 5
1502	Intensity 2	Channels	85 86 90 91 92	Signal	Extra Analog	1 2 3 4 5 6 7 8
	Open-circuit	Analog	48 52 56 60 65		Analog Inputs	1 2 3 4 5
, voc2	Voltage 2	Channels	69 73 77 81 84 85 86 90 91 92	Signal	Extra Analog	1 2 3 4 5 6 7 8
GND	GND					
A	RS485 A	RS485	33 37 41	A1, A2, A3		
В	RS485 B	RS485	34 38 42	B1, B2, B3		

Note: Power supply must be in the range 11.5...30VDC and it has to be able to supply peaks of 500mA. Modbus RTU is only implemented in sensors manufactured after June of 2023.

REQUIRED DATA LOGGER VERSION

Analog output:

Minimum data logger required: **ORBIT 360 BASIC PLUS**.

Minimum firmware required: any.

Digital output:

Minimum data logger required: **ORBIT 360 PREMIUM**.

Minimum **firmware** required: **2.15**.

HOW TO CONFIGURE IN ATLAS

There are two different ouput data signal: RS485 and analog. Use and connect one of them following its wiring according to your preferences.

Important: Modbus RTU is only implemented in sensors manufactured after June of 2023.

Start Atlas and open the data logger you are working on. Now go to *Site settings* and scroll down to the *Channels* section and select the following type and model. The analog output signal from the instrument must be connected to one of the analog channels (ANL1 to ANL15) on the Orbit 360:

Magnitude	Range	Group	Sensor Type	Sensor Model	Slope	Offset
Isc	0-20A	Analog channels	Voltage	Volts	4	0
Isc	0-30A	Analog channels	Voltage	Volts	10	0
Voc	0-60V	Analog channels	Voltage	Volts	12	0

The variables from the digital output signal can be chosen (or assigned) to an analog channel according to the list here below.

Example:

Serial bus 1 baud rate: 9600bps

Bus: Serial 1 >>> ID: A >>> Sensor model: Modbus >>> Name: MB_SERIAL1_A

Group: Analog channels
Sensor Type: Serial device
Sensor Model: MB_SERIAL1_A

Sensor Model: Modbus Register 1
 Sensor Model: Modbus Register 2
 Sensor Model: Modbus Register 3
 Sensor Model: Modbus Register 4

Important! Please make sure you are working with the latest version of Atlas. To check for new updates click the *Check for updates* button in the left-hand menu located in the main dashboard.

Sensor response time: 10ms.

The sum of the response times of all the sensors connected to the same bus must not exceed 850ms.

Serial instrument	MB_SERIAL1_A -	Modbus Register 1 🔻	0	Isc 1
Serial instrument	MB_SERIAL1_A -	Modbus Register 2 🔻	0	Voc 1
Serial instrument	MB_SERIAL1_A -	Modbus Register 3 💌	0	lsc 2
Serial instrument	MB_SERIAL1_A 🔻	Modbus Register 4 💌	0	Voc 2

^{*}Refer to the section RS-485 DIGITAL OUTPUT: MODBUS RTU for more information about the digital output.

Example:

RS485 DIGITAL OUTPUT: MODBUS RTU

The sensor supports Modbus RTU protocol, over its RS-485 physical interface. The Modbus communication protocol follows a master-slave format, where the sensor is the slave and an external device is the master.

Modbus is widely used to connect the Supervisory Control and Data Acquisition (SCADA) system in the wind farm (master) with the different remote terminal units (RTU) connected to the bus (slaves).

Parameter	Factory settings	Selectable values
Baudrate	9600	9600, 19200, 38400, 57600, 115200
Data bits	8	8
Parity	None	None, Even, Odd
Stop bits	1	1
Address	1	1 to 247

Among the standard functions of the Modbus protocol, the sensor implements the function 03: "Read Holding Registers". The sensor features 13 Modbus registers that are accessible through said function and start at address 0x0000 (PLC address: 40001).

The following table describes the Modbus map and the content of the data registers corresponding to a sensor response.

Address	PLC addres	Variable / Parameter	Read / Write	Data type	Range & scale	Example (incl. units)
0	40001	Isc channel 1	Read only	Unsigned 16	100	1545 = 15.45A
1	40002	Voc channel 1	Read only	Unsigned 16	100	4562 = 45.62V
2	40003	Isc channel 2	Read only	Unsigned 16	100	1545 = 15.45A
3	40004	Voc channel 2	Read only	Unsigned 16	100	4562 = 45.62V
4	40005	Reserved	Read only	Unsigned 16	-	-
5	40006	Reserved	Read only	Unsigned 16	-	-
6	40007	Reserved	Read only	Unsigned 16	-	-
7	40008	Reserved	Read only	Unsigned 16	-	-
8	40009	Reserved	Read only	Unsigned 16	-	-
9	40010	Reserved	Read only	Unsigned 16	-	-
10	40011	Slave address	Read/Write	Unsigned 16	1 to 247	1
11	40012	Baudrate	Read/Write	Unsigned 16	0=9600 1=19200 2=38400 3=57600 4=115200	0
12	40013	Parity	Read/Write	Unsigned 16	0=None 1=Even 2=Odd	0

The Slave Address, Baudrate and Parity can be configured writing on the registers 10 to 12. The configuration is done using the Modbus standard function 16: "Write Multiple Registers".

Important: the registers 10, 11 and 12 must be configured at the same time using a single write (using function 16) on the three registers at once.

HOW TO CONFIGURE THIS SENSOR ON SITE (ANALOG OUTPUT ONLY)

We recommend performing the entire sensor configuration using Atlas at the office before installing sensors onsite. Once the sensor is correctly setup in Atlas, use the *Upload settings* tool, to upload the sensor configuration to the data logger.

In case you are already on site and need to configure the sensor directly on the data logger, follow these steps:

- 1. Turn on the data logger.
- 2. Using the keypad on the data logger, navigate the menu until you see *Sensor model*, then click the "right arrow" on the keypad.
- 3. Now scroll down to the channel you are going to connect the sensor to, and click the "right arrow" on the keypad.
- 4. Now click "Set" on the keypad and scroll up in the menu to set the sensor model type according to the table here below. Once you have found the correct sensor model, click the "right arrow" key twice to select it and save.
- 5. Click the "left arrow" several times to go back to the main menu.

Data la gray madal	Figure vegeta a	Sensor model type on data logger			
Data logger model	Firmware version	Magnitude	Number	Name	
ORBIT 360	any	ISC	01	milliVolts	
		VOC	01	miliVolts	
FOL 7FMITH	OL ZENITH any	ISC	01	milliVolts	
EOL ZENITH		VOC	01	miliVolts	

Keep in mind: if the sensor channel has been configured as milliVolts, the output values on data logger display will always be shown in milliVolts. Remember to fill in both the slope and the offset for the Isc/Voc monitoring system to see real sensor values in **V** and **A** in your datasets during a real-time connection with the data logger (from either Atlas or Atlas Mobile).

HOW TO CONFIGURE IN EOL MANAGER (ANALOG OUTPUT ONLY)

Open EOL Manager and go to *Settings* of the data logger you are working on. Open the *Inputs* tab and select the following type and model:

Magnitude	Range	Group	Sensor Type	Sensor Model	Slope	Offset
Isc	0-20A	Analog Inputs	Voltmeter	Generic Voltimeter	4	0
Isc	0-30A	Analog Inputs	Voltmeter	Generic Voltimeter	10	0
Voc	0-60V	Analog Inputs	Voltmeter	Generic Voltimeter	12	0

