

DATASHEET

THIES FIRST CLASS

WIND VANE (TMR)

The Thies First Class wind vane (TMR version) is one of the most common wind vanes used in wind resource assessment to determine the wind direction.

4.3151.10.173

4.3151.00.173(heated)

4.3150.X0.173

DESCRIPTION

The Thies First Class wind vane wind (TMR – Tunnel Magneto Resistance) serves for the detection of the horizontal wind direction and is one of the most common sensors used in the industry for wind resource assessment.

Having accurate wind direction data is a very important part of any wind development project. Studies show that even small wind direction measurement errors can have a very negative impact on the total wind farm power output.

Special characteristics:

- High level of measuring accuracy and resolution
- High damping ratio at a small delay distance
- Low starting threshold

Heated version: The Thies First Class wind vane can be supplied in a heated version to improve performance under cold climate conditions.

Note: Given the impact incorrect wind direction measurements have, the recently updated IEC61400.12.1 (2017) now requires complete assessment of wind direction measurement uncertainties. By adding a Geovane to your wind measurement campaign (in combination with either a Thies First Class or a Thies Compact wind vane) you are guaranteed to get the most accurate wind direction data available on the market.

APPLICATIONS

Wind resource assessment, solar resource assessment, site calibration, power performance studies, solar monitoring and meteorology.

FEATURES

Technical Data

Measuring range	0360°
Measuring accuracy	1°
Survival speed	85 m/s up to 30 minutes
Permissible ambient conditions	-50+80 °C
for operation	All occurring situations of r.h. including dew moistening
Electrical outputs resolution analogue (10 bit)	$05V$ at $1k\Omega$
Starting threshold	<0.5 m/s at 10° amplitude (acc. to ASTM D 5366-96)
	<0.2 m/s at 90° amplitude (acc. to VDI 3786 Part 2)
Delay distance	<1.8 m (acc. to ASTM D 536696)
Damping ratio	D>0.3 (acc. to ASTM D 536696)
Quality factor	K>1
	D = damping ratio
	$\omega 0$ = angular frequency of undamped oscillation
	p = air density
	u = wind speed
Heating	Surface temperature of housing neck >0 °C at 20 m/s up to -10 °C air temperature. At 10 m/s up to -20 °C using the THIES icing standard 012002 on the housing neck heating regulated with temperature sensor
Electrical supply for electronics	1224 VDC
(galvanic isolation) 4.3151.x0.173	ca. 4.5 mA + lout
Electrical supply for heating	Voltage: 24 V AC/DC, 4565 Hz (galvanic isolation from the housing)
	Capacity: 25 W
Connection	8-pole plug connection for shielded cable in the shaft
Weight	ca. 0.7 kg
Protection	IP 55 (DIN 40050)

CABLE RECOMMENDATION

Signal cable up to 150m: 4x0.5 mm² + shield. For longer cable, please consult sensor manufacturer.

Heating cable cross-section should be calculated based on the power system requirements (Volts and Amps) and the cable length. Please use a wire sizing tool for selecting the most suitable cable.

SENSOR WIRING TABLE

Consor Model	Sensor Pin		Kintech Cable Colors		Orbit 360			EOL Zenith	
Sensor Model					Section	Terminal	Туре	Section	Terminal
5 ² 4 3 8 1 7 6	1	Signal	0	White	Analog Channels	48 52 56 60 65 69 73 77 81 84 85 86 90 91 92	Signal	DIR Analog Inputs	sic sig 1 2 3 4 5
	2	GND	•	Brown	Analog Channels	47 51 55 59 64 68 72 76 80 87	(-)	DIR Analog Inputs	
	3	Us (+)	•	Green	Analog Channels	49 53 57 61 66 70 74 78 82 88	*(+)	BAT	±
Base sensor view / Soldering connector view.	4		Do not connect						
	5		Do not connect						
	6	Reference	•	Yellow	Analog Channels	47 51 55 59 64 68 72 76 80 87	(-)	DIR Analog Inputs	-
	Shield		•	Yellow Green	Power Input 💄 BAT		÷		
	7	Heating (+)		Brown					
	8	Heating (-)		Blue	Independent power supply 24 AC/DC				

Note:

Data logger hardware version < 3, (+) = Bat+ with current limited (12mA). Only 1 sensor must be powered on each output terminal. Data logger hardware version ≥ 3 , (+) = Bat+ with current limited (50mA). Only 1 sensor must be powered on each output terminal.

REQUIRED DATA LOGGER VERSION

Minimum data logger required: ORBIT 360 BASIC PLUS.

Minimum firmware required: any

HOW TO CONFIGURE IN ATLAS

Start Atlas and open the data logger you are working on. Now go to *Site settings* and scroll down to the *Channels* section and select the following type and model:

- Group: Analog channels
- Sensor Type: Windvane
- Sensor Model: Output 0-5V: Thies TMR / K360V

Important! Please make sure you are working with the latest version of Atlas. To check for new updates click the *Check for updates* button in the left-hand menu located in the main dashboard.

HOW TO CONFIGURE THIS SENSOR ON SITE

We recommend performing the entire sensor configuration using Atlas at the office before installing sensors onsite. Once the sensor is correctly setup in Atlas, use the *Upload settings* tool, to upload the sensor configuration to the data logger. In case you are already on site and need to configure the sensor directly on the data logger, follow these steps:

- 1. Turn on the data logger.
- 2. Using the keypad on the data logger, navigate the menu until you see *Sensor model*, then click the "right arrow" on the keypad.
- 3. Now scroll down to the channel you are going to connect the sensor to, and click the "right arrow" on the keypad.
- 4. Now click "Set" on the keypad and scroll up in the menu to set the sensor model type according to the table here below. Once you have found the correct sensor model, click the "right arrow" key twice to select it and save.
- 5. Click the "left arrow" several times to go back to the main menu.

Data la gray madal	Firmware version	Sensor model type on data logger				
Data logger model	Firmware version	Magnitude	Number	Name		
ORBIT 360	any	Wind direction	18	VANE Output 0-5V		
EOL ZENITH	any	Wind direction	08	Output 0-5V		

HOW TO CONFIGURE IN EOL MANAGER

Open EOL Manager and go to *Settings* of the data logger you are working on. Open the *Inputs* tab and select the following type and model:

• Group: Wind Vanes / Analog Inputs

Sensor Type: WindvaneSensor Model: Output 0-5V

